MODELING EFFECTS OF CLIMATE CHANGE AND VARIABILITY ON SORGHUM YIELD IN ETHIOPIA

7th UF Water Institute Symposium February 25-26, 2020

Fikadu G.¹, Tommaso Stella², Marcos Lana³, Michael Berg², Haimanote Bayabil¹

¹Agricultural and Biological Engineering Department University of Florida, Gainesville, FL, USA

²Leibniz Centre for Agricultural Landscape Research (ZALF), Germany

³Swedish University of Agricultural Sciences (SLU), Sweden

Outline

- Introduction
 - Background information
 - Objectives of the study
- Methodology
- Result and discussions
 - Climate variability
 - Climate change adaptation
- Conclusion

Introduction

- Agriculture constitutes the largest economy
- One of the most important cereals, third after Teff and Maize
- Drought resistance, an important food security crop

Growing areas

Sorghum consumptions

Objective of the study

1. To assess climate change and variability impacts on sorghum production

2. To evaluate selected climate change adaptation practices

Methods

- Monica- Model
 - One-dimensional, dynamic, process-based
 - Bio-chemical turn-over of carbon, nitrogen and water in agro-ecosystems
 - Using a daily time step
 - Processes in soil, plant, atmosphere

Methods

- Phenology, yield and management data
- Soil data- African soil information system(AFSIS)
- weather and climate data(ISIMIP [2017])
 - ipsl-cm5a-lr
 - 4 RCPs
 - 3 periods

Model calbiration

- Calibrated following Houska et al. [2015]
 - Global optimization algorism, spotpy model calibration procedure
- Using data from field Experiments carried out at MARC during 2010–2011

Methods...

- Adaptation
 Fertilizer and sowing date
 - N demand fertilizer

 Based on calculated onset

Methods...

- Variability Fractal dimension analysis derived from Hurst index as described by Xu et al.
 [2017]
- The onset date calculation was done based on Dunning et al. [2016] using R.

Results Calibration

Projected climate change

Projected...

Change precipitation(%)

150

100

- Early onsetsouth and sw
- Normal to late

Sowing dates

Impacts of climate change

Change in yield(%)

Sorghum yield with Adaptation

Conclusion

- Climate change and variability expected to be very high
- Without adaptation strategies up to 50% yield reduction is expected
- Calculated onset date and targeted fertilizer application would increase production up to 150%

Thank you

https://conference.ifas.ufl.edu/waterinstitute/tentative -detailed-agenda.html